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Stabilization of a cylindrical capillary bridge far
beyond the Rayleigh–Plateau limit using acoustic

radiation pressure and active feedback
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(Received 7 February 1997 and in revised form 1 June 1997)

A novel method of suppressing the Rayleigh–Plateau capillary instability of a cylin-
drical liquid bridge is demonstrated which uses the radiation pressure of an ultrasonic
wave to control the shape of the bridge. The shape of the bridge is optically sensed
and the information used to control the spatial distribution of the radiation stress on
the surface of the bridge. The feedback is phased so as to suppress the growth of the
axisymmetric mode which normally becomes unstable when the slenderness, given by
the length to diameter ratio, exceeds π. Stabilization is achieved out to a slenderness
of 4.3 for a bridge density matched to the surrounding water bath in a Plateau tank.
Breakup of such long bridges was found to produce a satellite drop from the receding
thread of liquid. The active stabilization mechanism used may have application to
other capillary systems.

1. Introduction
Plateau (1863) studied the surface-tension-driven instability of cylindrical liquid

surfaces and the problem was analysed by Rayleigh (1879). In the absence of gravity,
a cylindrical liquid column of length L and radius R with pinned contact lines
becomes unstable and breaks if the slenderness S = L/2R exceeds π. This length is
usually known as the Rayleigh–Plateau (RP) limit. The control of the RP instability
is relevant to the management of fluids in various situations. For example, fluid
handling schemes in the reduced-gravity environment of an orbiting spacecraft can
make use of cylindrical liquid columns. In some instances it may be advantageous to
have an extra-long liquid column, such as in a float-zone crystal growth operation.
Stabilization methods relying on specific electrical properties of the liquid column
have been studied. Bridge stabilization at lengths beyond the RP limit has been
demonstrated using axial electric fields for dielectric fluids (Raco 1968; Sankaran &
Saville 1993; Ramos, Gonzalez & Castellanos 1994). An axial magnetic field has been
predicted to stabilize bridges of conducting liquids (Nicolás 1992). The stabilization
method demonstrated here uses a fundamentally different approach.

A bridge stabilization method will be described in this paper which uses acoustic
radiation pressure – the time-averaged pressure of an acoustic standing wave – to
preferentially expand one side or the other of a liquid bridge, counteracting the
growth of the mode of deformation which normally leads to breakup of the bridge.
The radiation pressure of an acoustic standing wave is commonly used to trap
and manipulate drops or bubbles in low-gravity environments (Marston et al. 1994;
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Wang, Anilkumar & Lee 1996; Apfel et al. 1997). It provides a convenient way
of driving shape oscillations on drops or bubbles by modulation of the acoustic
radiation pressure (Marston & Apfel 1979; Marston 1980; Trinh, Zwern & Wang
1982; Trinh, Marston & Robey 1988; Asaki & Marston 1995a). Morse, Thiessen &
Marston (1996) have shown that modulation of acoustic radiation pressure can be
used to excite various shape modes of a cylindrical liquid bridge in a Plateau tank.

The method of stabilization described here appears to offer a unique way of
observing the breakup of a long low-viscosity axisymmetric fluid column. Breakup in
this experiment can follow a quiescent initial condition with a cylindrical geometry at
a slenderness ratio which is well into the naturally unstable region. It can be initiated
by turning off the ultrasonic field that stabilizes the bridge. Photographic evidence to
be presented here reveals the existence of a thin axisymmetric neck during the final
stages of breakup. Such necks are characteristic of the pinch-off of a hanging droplet
or a liquid jet which has received much attention in the literature. The dynamics of
breakup are interesting because they involve a singularity in the continuum equations
as the neck diameter approaches zero. Universal scaling laws have been shown to
apply in the vicinity of the singularity which lead to similarity solutions for the shape
of the neck (Eggers 1993). Studies of pinch-off for a drop falling from a nozzle (Shi,
Brenner & Nagel 1994) and of the breakup of drops which have been stretched in
a Couette flow (Tjahjadi, Stone & Ottino 1992) confirm some aspects of the theory.
Other experiments relevant to breakup include those on stretching of liquid bridges
by Zhang, Padgett & Basaran (1996).

The Bond number of a capillary bridge is commonly defined as

B = (ρi − ρo)
gR2

σ
,

where ρi and ρo are the densities of the inner and outer fluids, g is the acceleration
due to gravity, and σ is the interfacial tension. For the experiments described here, B
is quite small (|B| ≈ 10−3) and the small offset in B from zero which may be present is
unimportant to the interpretation of the observations. The experimental configuration
chosen for convenience has a horizontal bridge axis, though the orientation of the
bridge axis relative to the direction of g should be unimportant to the acoustic
stabilization mechanism investigated provided |B| is small. A different hydrodynamic
stabilization mechanism has recently been investigated by Lowry & Steen (1995, 1997)
which is relevant to vertical bridges typically with |B| ≈ 0.01 and values of S much
closer to the RP limit than is the emphasis of the present paper.

The oscillation modes of a capillary bridge are associated with surface deformations
which can be characterized in terms of an axial index N and azimuthal index m. The
index N is the number of half-wavelengths in the axial direction, while m is the
number of wavelengths in the azimuthal direction (Sanz & Dı́ez 1989). The axial
surface deformations are not purely sinusoidal owing to the conditions of volume
conservation and zero fluid velocity at the end supports. Axisymmetric modes have
m = 0, and in the absence of stabilization the (N,m) = (2, 0) capillary mode is the first
mode predicted to become unstable as S is increased with B = 0. Only the growth
of the (2, 0) mode is suppressed in this experiment. Normalized mode frequencies for
the (2, 0) and (3, 0) axisymmetric and the (1, 1) and (1, 2) non-axisymmetric modes for
the system of liquids used here were measured by Morse et al. (1996) for S < 3.1.
Some other investigations of the dynamics of bridges with small B include Zhang &
Alexander (1990) and Perales & Meseguer (1992) while Anilkumar et al. (1993), in
an experiment carried out at moderately large B, demonstrated that vibration of one
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end of a bridge introduces a streaming that may be used to balance thermocapillary
flow.

2. Relevant aspects of acoustic radiation pressure
Prior to considering the mechanism of acoustic stabilization it is helpful to review

some properties of the acoustic radiation pressure on liquid drops in ultrasonic stand-
ing waves. Attention is restricted to the case which is analogous to the liquid bridge
used in our experiment where ρi ≈ ρo and the ratio of the inner to outer adiabatic
compressibilities κi/κo is greater than unity. Furthermore, as in our experiment, the
radius R is small in comparison to the acoustic wavelength but large in comparison
to the thickness of the Stokes boundary layers which oscillate at the acoustic fre-
quency. For this situation, the viscous corrections to the radiation force have been
shown to be small (Doinikov 1994, 1997) so that the inviscid acoustic approximation
of Yosioka & Kawasima (1955) is applicable. Observations for this situation (Crum
1971; Apfel 1976; Marston & Apfel 1979; Trinh et al. 1982) confirm the predictions
that the radiation force on the drop is directed toward the pressure antinodes of the
standing wave.

The equilibrium shape is predicted to be non-spherical so as to establish a balance
between the local radiation stresses and the Young–Laplace pressure (Marston 1980;
Jackson, Barmatz & Shipley 1988). The radiation stress analysis of Asaki & Marston
(1995b), given originally for bubbles, may be shown to apply to this case with the
following prediction: the small drop under consideration with ρi ≈ ρo and κi > κo
located at a pressure antinode will be flattened with its symmetry axis along the
opposing wavevectors of the acoustic standing wave. The deformation varies in
proportion to p2

a/σ when pa is small where pa is the acoustic pressure amplitude.
Both from the direction of the radiation force and from the predicted flattening

of the drop, it is evident that parcels of the more compressible fluid in the density-
matched system are attracted to the pressure antinode of the standing wave. An energy
analysis also supports this conclusion (Gor’kov 1962). The design of the experiment
described below may be anticipated from a generalization of this result to capillary
bridges.

3. Experimental apparatus
3.1. The Plateau tank and the acoustic control strategy

A liquid bridge is deployed between two circular supports of radius R = 2.16 mm in
water in a transparent acrylic Plateau tank (figure 1). The bridge liquid is a mixture
of 5 cS polydimethylsiloxane (PDMS, Dow Corning 200 fluid, density ρPDMS =
0.92 g cm−3, compressibility κPDMS = 11.9×10−11 cm2 dyne−1) and tetrabromoethane
(TBE, density ρTBE = 2.96 g cm−3, compressibility κTBE = 3.11×10−11 cm2 dyne−1). A
composition of 11.3% by weight TBE in PDMS gives the bridge liquid the same
density as water so the bridge is neutrally buoyant within a small experimental
error. The interfacial tension between this mixture and water was measured to be
36 dyne cm−1 at 21 ◦C using a static method based on digital image analysis. A simple
mixing rule was used to determine the compressibility of the PDMS and TBE mixture,
which gives a compressibility ratio of κi/κo = 2.6.

A 5.1 cm diameter resonant-bar transducer driven by a stack of piezoelectric disks
is mounted in the base of the Plateau tank. The transducer is modified from the one
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z

1 cm

Figure 1. Front view of the Plateau tank with a stepped transducer.

described by Morse et al. (1996) in that the transducer has a 3 mm step machined
into the radiating surface along a diameter (figure 1). The transducer is driven at
approximately 120 kHz with a water height of 3.1 cm above the low side of the
transducer. This produces an acoustic standing wave inside the tank having spatial
structure that depends on the frequency because the distance to the reflecting surface
opposite the transducer has a left–right (l–r) asymmetry when viewed as in figure
1. Scanning the tank with a small hydrophone revealed the presence of a pressure
antinode that moved horizontally in space as a function of driving frequency. (The
frequency dependence of the location of the antinode in an acoustic resonator having
a step in the boundary was also confirmed with an approximate numerical solution
of the wave equation.) The property of acoustic radiation pressure reviewed in §2
that the most compressible fluid is attracted to the pressure antinode is used to
control the shape of the bridge. The bridge is positioned in the sound field such
that the antinode is roughly in the centre of the bridge and can be moved slightly
off centre in either direction. Thus, by adjusting the frequency the acoustic radiation
pressure can be positioned to expand either half of the bridge. Notice that since
the vertical position of the bridge is close to an antinode, the up–down radiation
pressure forces on the bridge are weak. Consequently, varying the acoustic frequency
primarily couples to the (2, 0) capillary mode and only weakly to the (1, 1) and (2, 1)
translational modes of the bridge. Typically, the acoustic pressure amplitude at the
antinode was approximately 1.4 atm.

3.2. Optical sensor

The purpose of the optical sensor is to detect the l–r asymmetry of the (2, 0) capillary
mode. A schematic of the optics is shown in figure 2(a). The bridge is illuminated
with a HeNe laser beam that has been expanded to about 15 mm in diameter. After
passing through the bridge, the beam is focused onto a 10 mm diameter four-segment
photodiode. A spatial filter placed at the focus of the lens blocks light reflected and
refracted by the bridge from entering the photodiode. The detected optical power
is reduced in proportion to the extinction of light by the bridge though it does not
give a true measurement of the optical extinction as noted in some of the previous
applications of this detection method (Trinh et al. 1988; Stroud & Marston 1993).
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Figure 2. Top view of optical arrangement (a), and photodiode orientation (b). The grey circle
represents the spot size of the laser beam illuminating the photodiode.
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Figure 3. Electronics block diagram.

The aperture of the spatial filter is sufficiently wide to avoid modulation of the
detected optical power by the acoustic standing wave. It is also wide enough to pass
the forward diffraction peak of the bridge. A laser line filter is also used to reduce
noise caused by room lighting. The use of beam splitters allows the bridge to be
backlit and viewed with either a CCD or 35 mm SLR camera. The photodiode is
oriented with respect to the projected bridge image as shown in figure 2(b). In this
orientation, only two of the four segments are used. The photodiode is mounted on
a translation stage to allow fine adjustment in the horizontal direction perpendicular
to the laser beam.

3.3. Feedback and electronics

The photodiode signals are input to the circuit illustrated in figure 3. In the pream-
plifier, the currents produced by the photodiode are converted into voltages and the
difference, V1, is taken. Then an adjustable offset voltage V0 is subtracted from V1 and
the difference is multiplied by an adjustable gain h. For active control V2 is applied to
the frequency modulation input of a function generator which produces a sine wave
of frequency f = f0(1 + KV2). The centre frequency f0 is typically about 120 kHz,
and during normal stabilization f will vary by less than 1 kHz. The output of the
generator is amplified and applied to the transducer. The feedback signal V2 may be
disconnected with the switch shown in figure 3, and for test purposes it can be helpful
(see §4) to replace V2 by a low-frequency sine wave so as to purposely excite the (2, 0)
mode of a naturally stable bridge.

The asymmetric acoustic radiation pressure profile applied to the bridge can be seen
as an equivalent force applied to a damped mass-and-spring system. A linear model
for a capillary bridge with feedback is discussed in the Appendix. Increasing the gain
of the feedback system has the effect of stiffening the spring. A bridge which is longer
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Figure 4. Static bridge deformation and photodetector signal as a function of driving frequency
for a bridge of S = 3.0.

than the RP limit would have a negative spring constant, leading to instability. The
effect of feedback is to make the effective spring constant positive thus stabilizing the
system.

4. Control of the equilibrium shape of a naturally stable bridge
The stabilization scheme utilized in this work depends on the idea that the asym-

metric sound field in the tank produces a radiation pressure difference between the
halves of the bridge, and that this difference is linearly related to the transducer
driving frequency. The design of the feedback control system is also based on the
assumption that the photodetector signal is linearly related to the actual bridge defor-
mation. To test these assumptions a bridge with slenderness slightly less than the RP
limit was deployed in the sound field and the acoustic frequency was slowly varied.
Figure 4 is a plot of the bridge deformation as a function of acoustic frequency
measured by digital image analysis superimposed with the photodetector signal from
the light extinction system. The deformation is measured by locating the coordinates
of several hundred edge points for the top and bottom edges of the horizontal bridge
from a digital image. The bridge radius Rmeas(z) at a given axial point z is taken as
one-half the diameter measured at that point. The bridge radius can be expanded in
a Fourier series

R(z) = R0 + c1 sin
(πz
L

)
+ c2 sin

(
2πz

L

)
+ . . . ,

where the Fourier coefficient c2 is termed the ‘bridge deformation’ in figure 4. To find
c2, the integral

c2 =
2

L

∫ L

0

Rmeas(z) sin

(
2πz

L

)
dz

is evaluated numerically. The photodetector signal plotted is the difference between
the signal measured at point V1 in figure 3 and the signal measured for a bridge with
zero deformation. It is clear that over a range of frequencies, the bridge deformation
is approximately a linear function of frequency, and the photodetector signal is in



Stabilization of a capillary bridge 351

good agreement with the actual bridge shape. This is the region in which stabilization
can take place.

An additional test of the coupling is to replace V2 by a low-frequency sine wave
so as to modulate the acoustic frequency. When the frequency of the modulation
is adjusted to the natural frequency of the (2, 0) mode, the bridge is observed to
be driven into stable oscillation in that mode. The mode frequency was found to
decrease with increasing slenderness S < π as previously confirmed by Morse et al.
(1996) using only amplitude modulation of the ultrasonic standing wave.

5. Bridge stabilization
5.1. Experimental procedure

A naturally stable cylindrical bridge with S ≈ 3 is produced in the absence of a
sound field. The position of the photodiode is adjusted such that the output voltage,
V1 in figure 3, is nearly zero. At this point, a sound field is applied without feedback
and the centre frequency is adjusted such that V1 is again nearly zero. Feedback is
now turned on, and the bridge shape is fine tuned by adjusting V0. The bridge is
extended by separating the supports while injecting fluid to maintain a cylindrical
volume. The gain h must be adjusted such that it is high enough to enable the bridge
to be extended past the RP limit. However, it has been observed that if the gain
is set too high, the bridge will be driven into oscillation. One possible explanation
for this is that the time delay between the measurement of the bridge shape and
the application of the restoring force causes a reduction in the effective damping. At
large enough feedback gain the damping will become negative, causing the bridge to
become unstable (see the Appendix), although it is unknown if this is the mechanism
that causes the observed instabilities.

5.2. Results

Figure 5 shows a sequence of images captured from a CCD video record of a stabilized
bridge. In figure 5(a), there is no sound field and the bridge is naturally stable at
S = 3.0. The stabilization is then turned on and the bridge extended to S = 4.1
(figure 5b). The bridge remains stable for approximately 4.5 minutes (figure 5b–d).
At the time shown in figure 5(d), the sound field is turned off and within about 0.5 s
the bridge is broken (figure 5e–h). The time code displayed in the upper left corner
of each image is in the format ‘hours:minutes:seconds:frames:field’, where there are
30 frames per second and 2 fields per frame. Each field was exposed for 1/10 000 s.

The amount of time a bridge will remain stable when extended past the RP
limit decreases the longer the bridge. Since the bridge is not completely isolated
from the environment, small low-frequency ambient vibrations appear to eventually
cause the bridge to become unstable so that it breaks. Bridges with S ≈ 3.8 have
remained stable for up to 45 minutes, while bridges with S ≈ 4.3 are stable for up
to several minutes. Figure 6 is a photograph of a stabilized bridge having S = 4.3.
The static l–r asymmetry evident is more pronounced than for the slightly shorter
bridge in figure 5(c). A small amount of rotational asymmetry is also evident and
these imperfections are to be expected from the static responses to the radiation stress
noted in §2. The imperfections are more clearly seen the more slender the bridge. The
small amplitude of these asymmetries may be a consequence of the relatively large
variation of radiation pressure with location on the surface of the bridge needed to
excite modes having m > 1 in comparison to the (2, 0) mode. For the present case
of a bridge located at a pressure antinode, this variation is small because the ratio
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Figure 5. A CCD record of a stabilized bridge. In (d) the sound is turned off resulting in growth
of the (2, 0) mode and subsequent breakup of the bridge.
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Figure 6. A stabilized bridge with S = 4.3.

of R0 to the acoustic wavelength is only 0.18. It is also relevant that a given modal
amplitude for m > 1 is associated with relatively large variations in the mean surface
curvature and hence large variations in pressure. Deformations having m = 1 have
been suppressed because the variations in the translational force with axial position
are suppressed by the positioning of the bridge at an antinode as discussed in §3.1.

The intentional breakup of a long bridge may be triggered as in figure 5(d) by
switching off the input to the power amplifier that drives the acoustic transducer. The
resulting breakup always generates a satellite drop as shown in figure 5(h). Notice
also in figure 5(g) that the left surface of the drop attached to the rightmost support
appears to be flattened by the momentum of the receding column of liquid. For the
range of bridge lengths explored the initiation of the breaking of the bridge appears
to be associated with the growth of the (2, 0) mode as is evident by inspection of
figure 5(c).

6. Discussion and conclusions
It has been demonstrated that acoustic radiation pressure can be used with an

active feedback system to stabilize capillary bridges in simulated low gravity well
beyond the RP limit. With the current apparatus, stable bridges with S as large as
4.3 can be produced.

In the event that perfect control of the (2, 0) mode were achieved by the active
feedback method demonstrated, it is anticipated that for a sufficiently long bridge, the
(3, 0) mode becomes unstable. A simple generalization of Rayleigh’s analysis indicates
that the stability limit for the (3, 0) mode is S = 3π/2 ≈ 4.71. While it is not known
if our method may be used to reach that limit, it is noteworthy that for more viscous
liquids than the approximately 5 cS mixture used here, it should be possible to increase
the amplification of the feedback loop without driving the bridge into oscillations.
The linear inviscid analysis of Sanz (1985) and Sanz & Dı́ez (1989) predicts that
the (3, 0) mode frequency vanishes for S = 3π/2 while the non-axisymmetric mode
frequencies remain finite. To suppress the growth of the (3, 0) mode in a sufficiently
slender bridge by active feedback, it would be necessary to add an additional degree
of freedom to the sensor and to the control of the radiation pressure distribution.
This would probably require a significant complication of the ultrasonic transducer.

While the positioning of the bridge in the acoustic field was selected for the
present case of a neutrally buoyant bridge, the radiation-pressure feedback control
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demonstrated here may be applied to stabilize liquid bridges surrounded by gas.
Unfortunately, the stability limits of a cylindrical bridge in that case might be best
explored in a reduced gravity environment.

This work was supported by NASA.

Appendix. Linear model for the effect of feedback on bridge stability
A linear model of a capillary bridge in an external bath was explored to study

the effect of feedback on bridge stability. The model includes through a choice of
parameters the effects of an external bath and of an applied radiation pressure on
the bridge which counteracts the growth of the (2, 0) mode. The important result
obtained below is that for a naturally unstable bridge there is a limited range of
feedback strengths for which the bridge is expected to be stabilized. The bridge
response is analogous to that of a driven, damped, harmonic oscillator, where the
(2, 0) mode amplitude x corresponds to the oscillator’s displacement. Since a liquid
surface has a characteristic energy per unit area (surface tension), the change in
potential energy associated with a deformed neutrally buoyant bridge arises from a
change in surface area. It follows from geometric considerations that for the (2, 0)
mode the change in surface area and thus in potential energy is proportional to
[(π/S)2 − 1]x2 (Rayleigh 1879). Since the potential energy of a harmonic oscillator
with spring constant k is kx2/2, the spring constant for the (2, 0) mode is seen to
be proportional to [(π/S)2 − 1]. The generalized force on the modal mass is the
sum of the spring, damping, and feedback generalized forces. The feedback force is
taken to be a constant times the position of the mass at some previous time which
approximates the time required to sample the mode displacement. The total force is

Ftot(t) = −kx(t)− γdx

dt
− Gx(t− τ)− α

√
2

∫ t

−∞

1

[π(t− t′)]1/2

d2x

dt′2
dt′, (A 1)

where k is the spring constant, γ is the usual damping coefficient, G is the feedback
gain, τ is the time lag between the position measurement and the application of the
feedback force, and α is a boundary-layer coefficient. The boundary-layer term, which
includes both the viscous damping and inertia of the boundary layer, is of the form
given by Dryden, Murnaghan & Bateman (1956) and for shape oscillations of drops
by Prosperetti (1977). Expressions for the real, positive coefficients γ and α are not
given here but they could be approximated by extending the analysis of Higuera,
Nicolás & Vega (1994) to include the viscosity and inertia of the outer bath. The
equation of motion for the modal amplitude becomes

Ftot = mb
d2x

dt2
, (A 2)

where mb denotes the ‘bare’ modal effective mass for the corresponding inviscid system
(Sanz 1985). Solutions of the form

x = x0 eiΩt (A 3)

were investigated where Ω is a complex frequency and the integral in (A 1) is a
half-order derivative of dx/dt (Oldham & Spanier 1974). The feedback force becomes

Ffeedback = −Gx0 e−iΩτ eiΩt. (A 4)
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For small values of τ we can approximate e−iΩτ by a Taylor series expansion about
τ = 0 through terms second order in τ. Substituting for x from (A 3) in (A 2) yields
the following characteristic equation for Ω:

(ω2
b + Ge)− (1 + 1

2
Geτ

2)Ω2 + αei(1 + i)Ω3/2 + i(γe − Geτ)Ω = 0,

where ω2
b = k/mb and ωb is the natural frequency of the ‘bare’ or inviscid system

(Sanz 1985), Ge = G/mb, αe = α/mb, and γe = γ/mb. The characteristic equation can
be cast in the more convenient form for comparing to previous results

ω2
n − Ω2 + αni(1 + i)Ω3/2 + iγnΩ = 0, (A 5)

in which the following normalized quantities appear:

ω2
n =

ω2
b + Ge

1 + 1
2
Geτ2

, αn =
αe

1 + 1
2
Geτ2

, γn =
γe − Geτ

1 + 1
2
Geτ2

. (A 6a–c)

Because of the feedback loop, ω2
n may be made to be real and positive even though

the natural spring constant k and ω2
b are negative. The discussion below concerns

only the cases of interest which have ω2
n > 0. Equation (A 5) is now in the same

form, apart from some higher-order terms, as (6) of Asaki & Marston (1995) which
was derived for oscillating drops or bubbles immersed in a second fluid in a situation
where Ge = 0. Asaki & Marston (1995) give the following asymptotic solution to the
characteristic equation where ω2

n > 0:

Ω = ωn −
αnω

1/2
n

2
+

7
√

2α3
n

32ω
1/2
n

− 3αnγn

8ω
1/2
n

− 5α4
n

32ωn
+

3αnγn
8ωn

− γ2
n

8ωn

+ i

(
γn

2
+
αnω

1/2
n

2
− α2

n

2
+

7
√

2α3
n

32ω
1/2
n

− 3αnγn

8ω
1/2
n

)
+ O(ω−3/2

n ). (A 7)

The stability of the bridge is indicated by the sign of the imaginary part of Ω, a
negative sign indicating instability. However, this asymptotic solution in (A 7) is based

on the assumptions that (αn/2) < ω
1/2
n and (γn/2) < ωn. According to this model,

feedback has the desirable effect of raising the effective spring constant, which raises
ω2
n according to (A 6 a). Without feedback, the mass-and-spring system becomes

unstable if the spring constant is negative. In the bridge model the spring constant for
the (2, 0) mode is proportional to (π/S)2 − 1, where S is the slenderness. It becomes
negative when S > π. The addition of feedback can turn a negative spring constant
into a positive effective spring constant thus allowing stabilization of bridges beyond
the RP limit. Feedback also influences the normalized damping of the bridge and
two competing effects can be seen. The feedback delay causes a reduction in γn as
the gain is increased. On the other hand an increase in gain increases the resonant

frequency which increases the boundary layer damping due to the term (αn/2)ω
1/2
n .

The model predicts that as the feedback gain is increased for a given delay τ the
damping initially increases but then decreases to the point that the bridge becomes
unstable. For a given bridge slenderness in the naturally unstable regime, the model
predicts stability for a limited range of feedback gain such that −ω2

b < Ge < Geu
where for small αe, the upper bound Geu becomes γe/τ. Experiments (§5) confirm
that a bridge with slenderness beyond the RP limit becomes unstable if the feedback
gain is reduced or increased too much. According to this model, bridges sufficiently
slender that −ω2

b > γe/τ may no longer be stabilized; however the assumptions noted
below (A 7) may no longer apply. It is appropriate to note that while the feedback
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model used in (A 1) is that of a causal distortionless linear-phase filter, the concerns
raised by this analysis apply to a broader class of linear-phase low-pass models of
the feedback (Papoulis 1962, Chapter 6).
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